Objectives:

- Use calculus to ensure we have accurate graphs when we use computers for assistance.

Example: Consider the function $f(x)=\frac{e^{x}}{x^{2}-9}$. We want to produce a graph of f that shows all interesting characteristics of f. So we want to capture all intervals of increase and decrease, extreme values, intervals of concavity, and inflection points.

First, let's try graphing f online with WolframAlpha:

$$
\begin{aligned}
& \text { Input interpretation: } \\
& \qquad \begin{array}{|c|c|c|}
\hline \text { plot } & \frac{\boldsymbol{e}^{\boldsymbol{x}}}{x^{2}-9} & x=\mathbf{- 1 0} \text { to } 10
\end{array}
\end{aligned}
$$

Now what? To find intervals of concavity and inflection points, we need the second derivative.

Input interpretation:

$$
\text { plot } \begin{array}{c|c|c}
\boldsymbol{e}^{x} & x=-3.5 \text { to } 1.5+\sqrt{10} \\
x^{2}-9 &
\end{array}
$$

Plot:

So this is better but not great. It is still hard to see what's going on on the negative axis but we could make multiple graphs to get a better idea:

$$
\begin{aligned}
& \text { Input interpretation: } \\
& \qquad \begin{array}{|c|c|c|}
\hline \text { plot } & \frac{\boldsymbol{e}^{x}}{x^{2}-9} & x=-3.5 \text { to } 0 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Input interpretation: } \\
& \qquad \begin{array}{|c|c|c}
\hline \text { plot } & \frac{\boldsymbol{e}^{x}}{x^{2}-9} & x=0 \text { to } 1.5+\sqrt{10}
\end{array}
\end{aligned}
$$

Plot:

Plot:

