
Math 1300: Calculus I 4.4 Making better graphs using calculus

Objectives:

• Use calculus to ensure we have accurate graphs when we use computers for assistance.

Example: Consider the function f(x) =
ex

x2 − 9
. We want to produce a graph of f that shows all

interesting characteristics of f . So we want to capture all intervals of increase and decrease, extreme
values, intervals of concavity, and inflection points.

First, let’s try graphing f online with WolframAlpha:

This doesn’t seem very useful... There is an asymptote
drawn like a regular function and it doesn’t seem like the
negative values of x are in the domain at all!

Let’s use calculus to do better: The first derivative will
tell us about intervals of increase and decrease so let’s look
there first.

f ′(x) =
ex(x2 − 9) + ex(2x)

(x2 − 9)2
=

ex

(x2 − 9)2
(x2 − 9− 2x)

Since
ex

x2 − 9
is always positive, the sign of f ′ depends only

on the sign of x2 − 9− 2x. Using the quadratic formula to
find the zeros of this quadratic, we have

x =
2±
√

4 + 36

2
=

2±
√

40

2
=

2± 2
√

10

2
= 1±

√
10

Note that
√

10 is between 3 and 4. Now we need to find the rest of the critical points of f : where f
is undefined. This occurs when x2 − 9 = 0 so x = −3, and x = −3 are also critical points.
Now we can build a sign chart:

−3 1−
√

10 3 1 +
√

10

++ − − +
f ′(x)

So f(x) is increasing from (−∞,−3) and (1+
√

10,∞); f(x) is decreasing from (−3, 3) and (3, 1+
√

10).

Using the first derivative test, f has a local minimum at x = 1 +
√

10 and a local maximum at
x = 1−

√
10.

Reality check: What have we done? We found that in order for our graph to show intervals of increase
and decrease, and local extrema, we need to have our domain include (−3.5, 1.5 +

√
10) (ish).
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Now what? To find intervals of concavity and inflection points, we need the second derivative.
Quotient rule magic:

f ′′(x) =
ex(x4 − 4x3 − 12x2 + 36x + 99)

(x2 − 9)3

This has no real roots so there are no inflection points and the only possible concavity changes occur
where f ′′(x) is undefined (x = ±3) but we already know that these need to be included in our frame
for making the graph of f accurate.
Last reality check: Now we know that in order to capture all interesting information of the graph of
f , we should choose our domain to be an interval like (−3.5, 1.5 +

√
10) (ish).
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So this is better but not great. It is still hard to see what’s going on on the negative axis but we could
make multiple graphs to get a better idea:

3


